A repulsion mechanism explains magnesium permeation and selectivity in CorA

Olivier Dalmas, Walter Sandtner, David Medovoy, Ludivine Frezza, Francisco Bezanilla, and Eduardo Perozo

Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637

Magnesium (Mg$^{2+}$) plays a central role in biology, regulating the activity of many enzymes and stabilizing the structure of key macromolecules. In bacteria, CorA is the primary source of Mg$^{2+}$ uptake and is self-regulated by intracellular Mg$^{2+}$. Using a gating mutant at the divalent ion binding site, we were able to characterize CorA selectivity and permeation properties to both monovalent and divalent cations under perfused two-electrode voltage clamp. The present data demonstrate that under physiological conditions, CorA is a multioccupancy Mg$^{2+}$-selective channel, fully excluding monovalent cations, and Ca$^{2+}$, whereas in absence of Mg$^{2+}$, CorA is essentially nonselective, displaying only mild preference against other divalents (Ca$^{2+} >$ Mn$^{2+} >$ Co$^{2+} >$ Mg$^{2+} >$ Ni$^{2+}$). Selectivity against monovalent cations takes place via Mg$^{2+}$ binding at a high-affinity site, formed by the Gly-Met-Asn signature sequence (Gly312 and Asn314) at the extracellular side of the pore. This mechanism is reminiscent of repulsion models proposed for Ca$^{2+}$ channel selectivity despite differences in sequence and overall structure.

Among biological divalent cations, Mg$^{2+}$ is not only the most abundant, but also plays an essential role in a wealth of cellular processes, including enzymatic reactions, and the stability of nucleic acids and biological membranes (1). Although the biological importance of Mg$^{2+}$ is well established, the molecular entities and mechanisms that govern its cellular homeostasis are not well understood. In bacteria, Mg$^{2+}$ influx is primarily catalyzed by members of the CorA family of divalent ion transport systems (2, 3). The X-ray structure of CorA has provided an excellent template toward a molecular understanding of the mechanisms underlying Mg$^{2+}$ influx (4–7). However, although CorA has been crystallized in a wide range of conditions, so far all available CorA structures seem to correspond to nonconformative conformations, which obviously limits the basic mechanistic insights regarding Mg$^{2+}$ selectivity and translocation that can be derived from these high-resolution structures. Computational analyses, together with NMR, X-ray absorption, and Raman spectroscopy studies, have established that Mg$^{2+}$ holds to its first hydration shell much more tightly than any other physiological cation (8–11); this implies that any Mg$^{2+}$-selective transport system must either compensate for the high hydration energy (and accommodate the invariable octahedral geometry of this hexacoordinated ion) or establish a selectivity mechanism able to discriminate a hydrated or partially hydrated Mg$^{2+}$ ion from monovalent and other divalent cations.

Several hypotheses have been postulated to explain CorA’s function, including its role as a Mg$^{2+}$-selective channel (12), a Co$^{2+}$ transporter (13), and even as an exporter of divalent cations (14). However, detailed mechanistic evaluation of CorA’s functional properties has been limited by the resolution of existing functional assays (15). Mg$^{2+}$ transport through CorA depends on the combination of three parameters: (i) number of open gates, (ii) the electrical potential across the membrane, and (iii) the Mg$^{2+}$ driving force, none of which can be properly controlled with sufficient time-resolution in in vivo experiments.

Although a prokaryotic membrane protein, we have been able to heterologously express CorA in Xenopus oocytes, which, in combination with standard electrophysiological approaches, allowed us to measure CorA-catalyzed divalent macroscopic currents under a variety of ionic conditions. Crystalllographic studies have suggested that intracellular Mg$^{2+}$ acts as the main regulator of CorA gating under physiological conditions (6). That Mg$^{2+}$ acts as both a gating ligand and charge carrier ultimately complicates functional studies of CorA permeation and selectivity properties. To circumvent this issue we used a mutation at the divalent cation sensor that abolishes CorA Mg$^{2+}$-dependent gating (Fig. 1A). This construct is ideally suited to evaluate ion permeation because it stabilizes steady-state currents by inhibiting the divalent ion-driven negative-feedback loop that defines CorA gating. Our results demonstrate that CorA is a bona fide multioccupancy ion channel, and that its divalent cation permeation and tight selectivity against monovalent cations can be explained on the basis of a block and repulsion mechanism, where the canonical “signature sequence” Gly-Met-Asn (GMN) plays a central role.

Results

Mg$^{2+}$ as the Main Charge Carrier. In the presence of a negative holding potential ($V_h = -60$ mV), oocytes exposed to Mg$^{2+}$-containing solutions exhibited large inward currents under two-electrode voltage clamp (TEVC) only after being injected with CorA cRNA synthesized from a modified expression vector (Fig. 1B, Left). This Mg$^{2+}$ inward current peaks within a few seconds (a likely reflection of the speed of the solution exchange) and

Significance

CorA is one of the major Mg$^{2+}$ uptake systems in prokaryote, yet the mechanism of selectivity permeation is unknown. In CorA, Mg$^{2+}$ plays a dual role of charge carrier and gating factor. Here, we use electrophysiological recordings on a CorA gating mutant to establish that Mg$^{2+}$ selectivity arises from high-affinity divalent binding at the Gly-Met-Asn (GMN) signature motif at the extracellular loop of the channel. A repulsion mechanism through a second incoming Mg$^{2+}$ accelerates the rate of permeation while precluding monovalent ion flux. This work establishes CorA as a multion channel and improves our understanding of the physical properties underlying Mg$^{2+}$ selectivity in this class of ion channels.

Author contributions: O.D., F.B., and E.P. designed research; O.D., W.S., and L.F. performed research; D.M. and L.F. contributed new reagents/analytic tools; O.D. and E.P. analyzed data; and O.D., W.S., F.B., and E.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1Present address: Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.

2To whom correspondence should be addressed. E-mail: eperoz@uchicago.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319054111/-/DCSupplemental.
Fig. 1C shows a family of D253K–CorA-catalyzed Mg$^{2+}$ currents driven at different transmembrane voltages and 20 mM external Mg$^{2+}$. The dependence of these inward currents on external [Mg$^{2+}$] can be approximated by predictions from the Goldman–Hodgkin–Katz (GHK) flux equation (SI Materials and Methods), assuming that Mg$^{2+}$ is the only charge carrier (Fig. 1D, solid lines). All fits report an internal [Mg$^{2+}$] in the low millimolar range, consistent with values reported in the literature (Table S1) (17). Mg$^{2+}$ current amplitudes at −60 mV saturate as a function of the external Mg$^{2+}$ concentration and are best fit by a rectangular hyperbola with an apparent affinity of 11 mM (Fig. 1E and F). This apparent K_i contrasts with larger values reported for other ion channels, such as the Shaker K$^+$ channel (18) but relates well with values reported for the inward rectifiers Kir1.1 and Kir2.1 (19, 20) and is consistent with the presence of a high-affinity binding-site occupancy and/or ion interactions with multiple binding sites along the long pore (21).

Cobalt hexamine binds to the extracellular mouth of the pore. Cobalt hexamine [Co(NH$_3$)$_6$]$^{3+}$, a structural analog of hydrated Mg$^{2+}$, has been shown to inhibit CorA divalent influx from in vivo 63Ni$^{2+}$ uptake assays (22). Here, we have studied the mechanism of action of [Co(NH$_3$)$_6$]$^{3+}$ from inward competition experiments in which we varied either [Co(NH$_3$)$_6$]$^{3+}$ or Mg$^{2+}$ concentrations (Fig. 2A and B). Measuring [Co(NH$_3$)$_6$]$_{3+}$ block in the presence of Mg$^{2+}$ shows that the K_i (apparent blocker affinity) for the blocking event shifts linearly to lower values as Mg$^{2+}$ concentration increases, consistent with a competitive mechanism (Fig. 2C). The relative position of the binding site that presumably coordinates both Mg$^{2+}$ and [Co(NH$_3$)$_6$]$_{3+}$ can be estimated from fits to the Woodhull equation (23) (SI Materials and Methods), which describes the

spontaneously decays over the course of 15–20 min to a small (less than 5% of peak) steady-state current level. This current-decay is thought to be the result of a self-regulatory gating mechanism, where accumulating cytoplasmic Mg$^{2+}$ saturates an intracellular Mg$^{2+}$ binding site (Fig. 1A), leading to channel closure. The Mg$^{2+}$ gating site is likely formed by the pair D89, D253, located in the cytoplasmic domain (4) (Fig. 1A), consistent with the idea that Mg$^{2+}$ homeostasis in bacteria takes place through a Mg$^{2+}$ negative feedback loop (2, 6, 16). The D253K mutant displays robust steady currents but no signs of current decay (Fig. 1B, Right). Both wild-type and mutant CorA are sensitive to cobalt hexamine, a known CorA inhibitor, and are less permeable to Ni$^{2+}$ compared with Mg$^{2+}$ (Fig. S1); this suggests that CorA’s overall permeation properties are not affected by this mutation. Hence, all subsequent experiments presented were performed using this mutation as background.
Permeability. Mg for its conductance is high, but as Mg binds to a blocking site with a dissociation constant of and the ordination number (CN) is in- channels. We explored CorA permeation properties selectivity filter in CorA. B. The affinity is 1.3 ± 0.1. Corresponding permeation ra- (Fig. 3A and B). From these measurements, the permeability of divalent cations relative to Mg was esti- as Ca > Mn > Co > Mg > Ni in the absence of external Mg. Although not directly equivalent, this selectivity sequence is compatible with the idea of a high field strength site, according to a straightforward application of Coulombic inter- actions to a fixed, charged (or partially charged) site (28); this is in contrast to the known divalent selectivity sequence for the also pentameric acetylcholine (ACh) receptor channel (29), which parallels the sequence of ionic mobility in solution and is blocked by Ni2+, Zn2+, and Cd2+. Tellingly, the order of the water exchange rate of these ions (30) correlates directly with the shown CorA selectivity (Fig. 3B), suggesting that at least a partial dehydration step is involved in the permeation process. In contrast to monovalent cations, divalents can carry two or more hydration shells in solution (31). Consequently, the mild selectivity observed for CorA is not suggestive of a mechanism where dehydration of the tightly bound first hydration shell is the rate-limiting step.

When the current amplitude for a test ion is plotted as a function of the molar fraction of the external solution (relative to Mg), a clear deviation from linearity is observed (Fig. 3C). This phenomenon is known as the anomalous mole fraction ef- (AMFE) (32) and is traditionally interpreted as evidence for multiction pores under the assumption that ions are competing for similar binding sites. The presence of a robust AMFE is among the strongest pieces of evidence supporting the idea that CorA behaves as an ion channel and not as a transporter, because it suggests ions must simultaneously traverse a narrow pore in a single file, hopping from one binding site to the next (34).

CorA Selectivity Is Defined by a High-Affinity Mg Binding Site. The mechanism through which CorA selects Mg over Na under physiological conditions has yet to be addressed. A basic approach to this issue is to evaluate the influence of Mg on the permeability of monovalent cations at a fixed voltage. An initial glimpse of this selectivity mechanism can be obtained by measuring inward Na currents (40 mM) at −60 mV in the presence of a series of Mg concentrations. A representative trace is shown in Fig. 4A and points to a very strong AMFE with the presence of a relatively high-affinity divalent binding site, reminiscent of what was first observed in Ca channels (33, 35). In the absence of Mg2+, the channel is merely charge-selective and highly permeable to monovalent ions (a similar behavior was observed with K+; Fig. S2). When small amounts of Mg2+ are introduced in the external solution, Na currents are reduced considerably, as if Mg2+ binds to a blocking site with a dissociation constant of 1.3 ± 0.1 (Fig. 4B and C). Thus, at trace Mg2+ concentrations, the Na conductance is high, but as Mg2+ increases to micromolar concentrations, the selective region of the pore becomes occupied by a single Mg2+. Because of its intimate coordination at this

![Fig. 4.](image-url)
binding site, the Mg$^{2+}$ dissociation rate is much lower than it is for Na$^+$ (or any other monovalent cation), blocking the flow of Na$^+$, as expected from single-file permeation (Fig. 4B). A further increase in Mg$^{2+}$ concentration leads to an almost complete block of inward currents as Mg$^{2+}$ appears to stay bound for concentrations up to 100 μM.

Importantly, the affinity of the Mg$^{2+}$ block effect is orders of magnitude higher than that of Mg$^{2+}$ permeation itself (Fig. 2). The most parsimonious explanation for this phenomenon is that Mg$^{2+}$ binding to the high-affinity “blocking” site is destabilized by the presence of other incoming Mg$^{2+}$ in close proximity, decreasing its affinity. Indeed, when the external Mg$^{2+}$ concentration is raised into the millimolar range, the amplitude of the inward currents increases again, producing a “rising phase” in the AMFE plot. At this higher concentration, a second Mg$^{2+}$ can bind and, as a result of this double occupancy, the exit rate of Mg$^{2+}$ from the pore increases. The enhancement in the Mg$^{2+}$ off-rate is usually explained by invoking electrostatic repulsion between the two ions, but other mechanisms could also be involved (36). Regardless of the precise nature of the interaction between ions and as a result of the double occupancy, Mg$^{2+}$ is able to flow through the channel at increasing rates dependent on the Mg$^{2+}$ concentration.

Together with our observation of divalent-divalent interactions in the permeation pathway (AMFE; Fig. 3C), the presence of a dual permeability regime defined by the Mg$^{2+}$ concentration reinforces the idea that CorA is a multisite ion channel. This behavior fits remarkably well to the repulsion model for Ca$^{2+}$ selectivity (43). A plausible interpretation is that Gly309 and Met318 produce a rising phase in the anomalous profile, which might indicate that Asn314 could be a direct contributor to the Mg$^{2+}$ coordination site. Additionally, cobalt hexammine do not block N314A-driven Na$^+$ current (Fig. S4), suggesting that the selective binding site and the blocker binding site are at least partially overlapping at the GMN signature sequence. The location of this binding site in agreement with the mild voltage dependency (Fig. 2) as well as with recent crystallographic studies where an electron density was assigned to a Mg$^{2+}$ coordinated by residues from the GMN signature sequence (7, 24, 25). Furthermore, mutating Gly309 or Met318 affects the Mg$^{2+}$/Na$^+$ permeation ratio in a way that leads to better Na$^+$ permeability than Mg$^{2+}$, without the influence of the Mg$^{2+}$ block effect (Fig. 5 B and C). A plausible interpretation is that Gly309 and Met318 participate or influence a binding site physically distinct from the high-affinity one. Based on these results, we propose that the signature sequence and the N-terminal end of the extracellular loop form a multi ion selectivity filter at the extracellular mouth of CorA’s permeation pathway (Fig. 5D).

On the Energetics of Mg$^{2+}$ Binding and Coordination by CorA. Solving the Poisson–Boltzmann equation on a CorA complete structure

The GMN Signature Sequence Is Required for Ion Selectivity. In ion channels, the most conserved region of the protein is usually the key contributor to the selectivity process (37–39). Members of the CorA family of divalent-selective channels are defined by the signature sequence GMN/Met-Asn-Pro-Glu-Leu at the end of TM1 and the beginning of the extracellular loop (Fig. 5A; Fig. S3). Early mutagenesis studies on CorA from Salmonella have shown that mutating this region affects Mg$^{2+}$ uptake (40, 41), and similar conclusions were also drawn for the yeast CorA ortholog Mrs2p (42). We have evaluated the contributions of this region to the process of Na$^+$/Mg$^{2+}$ selectivity by performing alanine scanning mutagenesis between residues 309 and 323. Some of these residues cannot be mutated without a loss of expression or a loss of Mg$^{2+}$ transport activity (Fig. 5C) as expected from independent mutagenesis studies (16, 43, 44). However, when Asn314 from the GMN signature sequence is mutated to Ala, the high-affinity block by Mg$^{2+}$ is clearly compromised (Fig. 5 B and C). In contrast to the wild-type protein and all other mutants tested in this study, Na$^+$ currents carried out by N314A mutant are never completely blocked by Mg$^{2+}$. Also, increasing Mg$^{2+}$ concentration does not produce a rising phase in the anomalous profile, which might indicate that Asn314 could be a direct contributor to the Mg$^{2+}$ coordination site. Additionally, cobalt hexammine do not block N314A-driven Na$^+$ current (Fig. S4), suggesting that the selective binding site and the blocker binding site are at least partially overlapping at the GMN signature sequence. The location of this binding site in agreement with the mild voltage dependency (Fig. 2) as well as with recent crystallographic studies where an electron density was assigned to a Mg$^{2+}$ coordinated by residues from the GMN signature sequence (7, 24, 25). Furthermore, mutating Gly309 or Met318 affects the Mg$^{2+}$/Na$^+$ permeation ratio in a way that leads to better Na$^+$ permeability than Mg$^{2+}$, without the influence of the Mg$^{2+}$ block effect (Fig. 5 B and C). A plausible interpretation is that Gly309 and Met318 participate or influence a binding site physically distinct from the high-affinity one. Based on these results, we propose that the signature sequence and the N-terminal end of the extracellular loop form a multi ion selectivity filter at the extracellular mouth of CorA’s permeation pathway (Fig. 5D).

Interestingly, E316A does not critically affect either selectivity or permeation, which is in agreement with previous studies (16, 45), but clashes with our initial suggestion for the potential role of this side chain’s electrostatics in Mg$^{2+}$ selectivity (43).
(24) revealed a very strong electronegative surface potential, originating from the conserved residue Asn314 (from the GMN signature sequence; Fig. S5). The negatively charged pocket formed by the backbone carbonyl of Gly312 and the carbonyl group of Asn314’s carboxamide seems ideally positioned to be bridged by a Mg$^{2+}$. The optimal spatial distribution of the carboxyls could in principle create a high-affinity binding pocket for Mg$^{2+}$, either through direct contact or within its first hydration shell. Given its remarkably high electronegativity, the Mg$^{2+}$ first hydration shell is prone to favor spatially oriented water-mediated hydrogen bonds, as has been observed in B-DNA (46). It has been suggested that the Mg$^{2+}$ bound at CorA’s selectivity filter is hydrated or partially hydrated, but the moderate to low resolution of the existing crystallographic data does not allow for a definitive conclusion (7, 25). Cobalt hexammine competes with Mg$^{2+}$ and cannot block N314A-driven currents, supporting the idea that CorA could select for a hexahydrated Mg$^{2+}$ at the GMN motif; this has been further reinforced recently by calculations based on density functional theory (47). Lim and colleagues’ theoretical framework proposes that as long as the binding pocket is large enough to accommodate a hexahydrated cation, a pentameric carbonyl configuration would be able to select Mg$^{2+}$ over Ca$^{2+}$. The explanation for this selectivity resides in Mg$^{2+}$ stronger electronegativity, leading to tighter Mg$^{2+}$/water/protein interactions, and is also consistent with the known degree of polarization of the water molecules in the first hydration shell (stronger than for Ca$^{2+}$, for instance) (47).

Discussion

Since the publication of the crystal structure of CorA from *T. maritima* by three independent research groups (4–6), the architectural uniqueness of the CorA fold and its long narrow pore have led to important, and until now unresolved, questions regarding the molecular basis of Mg$^{2+}$ permeation and selectivity. Overexpressing CorA in *Xenopus* oocytes has eliminated an important roadblock to understand permeation, as it allowed for thorough, quantitative measurements to be made. Crystallographic evidence supported by mutagenesis studies suggest that CorA might be self-regulated by a Mg$^{2+}$ binding site formed by Asp89 and Asp253 at the intersubunit interface (4, 6, 16). As a consequence, the time course of CorA-mediated Mg$^{2+}$ currents would be influenced by parallel changes in the local Mg$^{2+}$ concentrations, closing a homeostatic negative feedback loop. The inward current decay observed in oocyte is compatible with this proposal, although a clear parallel between variation in cytoplasmic Mg$^{2+}$ concentration and current intensity awaits more definitive experiments. By introducing mutations at the putative Mg$^{2+}$ sensor we have eliminated the Mg$^{2+}$-dependent gating, allowing for a clear separation between gating and permeation events (Fig. 1).

The very strong electronegativity of Mg$^{2+}$ imposes important physical/chemical challenges in the design of any Mg$^{2+}$-selective transport system. If Mg$^{2+}$ is recognized and translocated with its first hydration shell intact, it would imply a selectivity process not directly linked to Mg$^{2+}$ ionic atomic properties. However, if full dehydration is involved, it would require large amounts of energy to relieve Mg$^{2+}$ of its hydration shell. CorA’s selectivity seems to rely on a high-affinity binding of Mg$^{2+}$ to the putative selectivity filter. Such a scenario is expected to considerably slow down permeation and to predict a small single-channel conductance (48). Interestingly, and despite repeated attempts, we were unable to measure CorA single-channel activity under conditions where macroscopic currents are readily obtained, suggesting that CorA’s single-channel conductance likely operates at sub-picosiemens levels under physiological conditions; this contrasts with the high conductance reported for the yeast homolog Mrs2p (49).

Experiments using mixtures of divalent ions at high (millimolar) concentrations led to the observation of an AMFE, which points to important divalent-to-divalent ion interactions within the pore (Fig. 3C). The AMFE is a hallmark of multiion pores and strongly supports the idea that mechanically, CorA functions as a bona fide ion channel and not as a transporter. Mixtures of monovalent and divalent cations in a wider concentration range lead to an extreme form of AMFE, which suggests a molecular mechanism of selectivity (Fig. 4). If CorA functions as a multition pore, and assuming the existence of at least two explicit divalent binding sites near or at the GMN selectivity filter, it is possible to describe the molecular events that lead to divalent permeation together with the exclusion of monovalent cations. In the absence of Mg$^{2+}$, CorA behaves as a nonelective channel freely permeable to cations. Increasing Mg$^{2+}$ concentrations to micromolar levels tends to block nonelective cation fluxes (the “falling phase” of the AMFE in Fig. 4B). At millimolar Mg$^{2+}$ levels, monovalent cation currents are fully blocked, leading to the permeation and selectivity behavior seen under physiological conditions. A high-affinity Mg$^{2+}$ binding site is key to this selectivity mechanism where the GMN signature sequence is likely to play a central role (Fig. 5).

In agreement with recent crystallographic studies (7, 24, 25), our results point to an important role of Asn314 in Mg$^{2+}$ coordination, possibly through its first hydration shell (47). In this scenario, Mg$^{2+}$ permeation through the GMN selectivity filter depends upon multiple Mg$^{2+}$ occupancy at the selectivity filter, which only becomes significant at millimolar Mg$^{2+}$ concentrations (the rising phase of the AMFE in Fig. 4B). Mg$^{2+}$ bound to its selective binding pocket plugs the channel, preventing other cations from leaking through its otherwise permissive pore. At higher concentrations, Mg$^{2+}$ populates one or more flanking binding sites and as a consequence increases the off-rate of the blocking Mg$^{2+}$ (likely by electrostatic repulsion) and allows for Mg$^{2+}$ conduction. We suggest that the second Mg$^{2+}$ binding site is located in close proximity to the Asn314 ring to allow for the electrostatic repulsion needed to secure high Mg$^{2+}$ throughput (Fig. 6). Unfortunately, the GMN and surrounding residues are important for protein structure integrity (16, 44), and alanine substitution of residues surrounding N314 also affects CorA oocyte expression, so a direct evaluation of this hypothesis will require additional experimental evidence.

Remarkably, the present mechanism is reminiscent of what has been proposed to explain Ca$^{2+}$ channel permeation and selectivity against monovalents (reviewed by Sather and McCleskey in ref. 50), despite any apparent structural or sequence similarity.
between the two classes of ion channels. We hypothesize that despite relative low sequence similarity, the basic principle described here would apply for the whole GMN divalent ion channel family. Available and upcoming structures should be evaluated in the framework of this proposed mechanism.

Materials and Methods

CorA from *Thermotoga maritima* was cloned in the pBSTA vector optimized for oocyte expression (51). Mutations were introduced by PCR using mismatch mutagenic primers as described by the Stratagene QuickChange Kit and verified by whole-genome sequencing. Oocytes were harvested from survival surgery on adult frogs according to standard protocol and injected with 50 ng of RNA. Electrophysiology measurements were performed on a custom-made TEVC setup according to basic standard procedures (52). All experiments were reproduced on different batches of oocytes with n > 5, and all error bars represent SDs of the mean. The voltage dependence of the apparent blocker affinity was fitted according to the Woodhull equation (27). The electrostatic surface potential was generated by solving the Poisson–Boltzmann equation using the Adaptive Poisson–Bolzmann Solver (53) on CorA structure (24). The system was equilibrated at pH 7.0 in the presence of 300 mM ions, and the results were scaled and mapped with PyMol (54). Detailed descriptions of materials and methods are provided in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Prof. Luis G. Cuello and Dr. Jose S. Santos for stimulating discussion throughout the course of this work; Prof. Dirk Gillespie for enlightening feedback and experimental advice; Prof. Richard Hume for advice and use of TEVC equipment; Dr. Cédric Orelle and members of E.P.'s laboratory for critical reading of the manuscript; and Dr. H. Clark Hyde for providing assistance with curve fitting. This work was supported by National Institutes of Health Grant GM088406.
