Gating currents from neuronal K\textsubscript{v}7.4 channels
General features and correlation with the ionic conductance

Francesco Miceli,1-3 Maria Roberta Cilio,2 Maurizio Taglialatela1,4,* and Francisco Bezanilla3,*

1Section of Pharmacology; Department of Neuroscience; University of Naples Federico II; Naples, Italy; 2Division of Neurology; IRCCS Bambino Gesù Children’s Hospital; Rome, Italy; 3Department of Biochemistry and Molecular Biology; The University of Chicago; Chicago, IL USA; 4Department of Health Science; University of Molise; Campobasso, Italy

Key words: potassium channels, gating currents, K\textsubscript{v}7, epilepsy, deafness, voltage-sensing domain

Abbreviations: K+, potassium; VGKCs, voltage-gated potassium channels; VSD, voltage-sensing domain; I\textsubscript{IKM}, M-current; DFNA2, slowly progressive deafness with autosomal-dominant hereditary transmission; BFNS, benign familial neonatal seizures; COVC, cut-open voltage-clamp technique; NMG, N-Methy-D-Glucamine; MES acid, methane sulfonic acid; TEA, tetraethylammonium; G/V, conductance-voltage; G, conductance; Q, gating charge; t, time constant; Q\textsubscript{ON},ON gating charge; Q\textsubscript{OFF},OFF gating charge; I(V), macroscopic current; n, number of channels; i(V), single-channel current; P\textsubscript{o}(V), opening probability

The K\textsubscript{v}7 (KCNQ) subfamily of voltage-gated K+ channels consists of five members (K\textsubscript{v}7.1-K\textsubscript{v}7.5) giving rise to non-inactivating, and slowly activating/deactivating currents mainly expressed in cardiac (K\textsubscript{v}7.1) and neuronal (K\textsubscript{v}7.2-K\textsubscript{v}7.5) tissue. In the present study, using the cut-open oocyte voltage clamp, we studied the relation of the ionic currents from homomeric neuronal K\textsubscript{v}7 channels (K\textsubscript{v}7.2-K\textsubscript{v}7.5) with the gating currents recorded after K+ conductance blockade from the same channels. Increasing the recording temperature from 18°C to 28°C accelerated activation/deactivation kinetics of the ionic currents in all homomeric K\textsubscript{v}7 channels (activation Q\textsubscript{ONs} at 0 mV were 3.8, 4.1, 1.8, 3.1 and 2.8 for K\textsubscript{v}7.2, K\textsubscript{v}7.3, K\textsubscript{v}7.4 and K\textsubscript{v}7.5 channels, respectively), without large changes in currents voltage-dependence; moreover, at 28°C, ionic currents carried by K\textsubscript{v}7.4 channels also showed a significant increase in their maximal value. Gating currents were only resolved in K\textsubscript{v}7.4 and K\textsubscript{v}7.5 channels; the size of the ON gating charges at +40 mV was 1.34 ± 0.34 nC for K\textsubscript{v}7.4, and 0.79 ± 0.20 nC for K\textsubscript{v}7.5. At 28°C, K\textsubscript{v}7.4 gating currents had the following salient properties: (1) similar time integral of Q\textsubscript{ON} and Q\textsubscript{OFF}, indicating no charge immobilization; (2) a left-shift in the V\textsubscript{1/2} of the Q\textsubscript{ON}/V when compared to the G/V (~50 mV in the presence of 2 mM extracellular Ba2+); (3) a Q\textsubscript{OFF} decay faster than ionic current activation; and (4) a rising phase in the OFF gating charge after depolarizations larger than 0 mV. These observations suggest, in K\textsubscript{v}7.4 channels, VSD movement is followed by a slow and/or low bearing charge step linking to pore opening, a result which may help to clarify the molecular consequence of disease-causing mutations and drugs affecting channel gating.

Introduction
Voltage-gated potassium (K+) channels (VGKCs) are membrane proteins, which undergo conformational changes that lead to the opening of the K+-selective pore in response to changes in membrane potentials. In neuronal cells, VDKCs play a critical role in setting the resting membrane potential, in action potential repolarization, and in controlling firing frequency and neurotransmitter release. VGKCs also regulate skeletal and smooth muscle contraction, cell volume, proliferation and differentiation, as well as hormonal secretion. Structurally, VGKCs are homomeric or heteromeric membrane proteins formed upon assembly of four identical or compatible subunits, respectively. Each subunit is composed of six transmembrane segments (S\textsubscript{1}-S\textsubscript{6}); the S\textsubscript{5} and S\textsubscript{6} segments and the intervening linker provide a major contribution to the formation of the K+-selective aqueous pore and the inner pore gate, whereas the S\textsubscript{4} region forms the voltage sensor domain (VSD).

The molecular and functional diversity of the VGKC family is astonishing, with each member characterized by distinct biophysical, pharmacological and regulatory properties. In particular, the K\textsubscript{v}7 (KCNQ) subfamily consists of five members (K\textsubscript{v}7.1-K\textsubscript{v}7.5), each showing a specific tissue distribution and pathophysiological role. In fact, K\textsubscript{v}7.1 is mainly expressed in the heart, whereas K\textsubscript{v}7.2-5 subunits have a prevalent neuronal location; this canonical view has been recently challenged by the discovery that some “neuronal” K\textsubscript{v}7 subunits, are also expressed in skeletal and smooth muscle cells. While K\textsubscript{v}7.1 subunits underlie the slow component of the cardiac repolarizing current I\textsubscript{Ks}, which contributes to the late phase of action potential repolarization, K\textsubscript{v}7.2, K\textsubscript{v}7.3, K\textsubscript{v}7.4 and K\textsubscript{v}7.5 subunits, either as homomultimers or heteromultimers, represent the molecular basis of the M-current (I\textsubscript{IKM}), a K+-selective, slowly progressive deafness with autosomal-dominant hereditary transmission; BFNS, benign familial neonatal seizures; COVC, cut-open voltage-clamp technique; NMG, N-Methy-D-Glucamine; MES acid, methane sulfonic acid; TEA, tetraethylammonium; G/V, conductance-voltage; G, conductance; Q, gating charge; t, time constant; Q\textsubscript{ON},ON gating charge; Q\textsubscript{OFF},OFF gating charge; I(V), macroscopic current; n, number of channels; i(V), single-channel current; P\textsubscript{o}(V), opening probability

*Correspondence to: Maurizio Taglialatela; Email: m.taglialatela@unimol.it / Francisco Bezanilla; Email: fbezanilla@uchicago.edu
Submitted: 05/22/09; Revised: 07/08/09; Accepted: 07/09/09
Previously published online: www.landesbioscience.com/journals/channels/article/9477
Loss of function mutations in four of the five K_v7 genes lead to distinct inherited diseases. K_v7.1 mutations are responsible for dominant (the Romano-Ward syndrome) and recessive (the Jervell and Lange-Nielsen syndrome) chromosome 11-linked forms of the long QT syndrome. Mutations in K_v7.4 underlie a slowly progressive deafness with autosomal-dominant hereditary transmission (DFNA2), whereas gene defects affecting K_v7.2 and, more rarely, K_v7.3 genes have been identified in families affected by Benign Familial Neonatal Seizures (BFNS), an autosomal-dominant inherited epilepsy of the newborn. In all these diseases, several missense mutations have been described affecting residues located within the VSD, and changes in gating properties of the macroscopic currents are believed to represent a crucial pathogenetic mechanism to explain the decreased activity of the affected channels. Moreover, drugs interfering with neuronal K_v7 channels gating represent novel therapeutic tools against hyperexcitability diseases in humans.

Gating currents are transient currents generated by the displacement of charged elements within the VSD in response to changes in transmembrane voltage; therefore, gating current recordings provide crucial insights into the channel structural rearrangements during the gating process. Although gating currents were originally described for ion channels in their native environment, heterologous expression systems allow to dissect the molecular basis for these structural transitions and to reveal essential elements of the channel protein contributing to gating currents. Gating currents are roughly two orders of magnitude smaller than the ionic currents; therefore, gating currents resolution requires a sufficiently high density of channels in the membrane, together with a complete block of their ion permeation. For VGKCs, gating current recordings in K_v1.1, K_v2.1, K_v1.5, K_v4.2, K_v10.1, and K_v11.1 have allowed to describe the molecular basis for peculiar kinetic or steady-state ionic current behavior, to gain a deeper understanding of the structure-function relationships for these channels, and in some cases, to unveil the pathophysiological role of specific residues affected in genetic channelopathies.

In the present study, we have addressed some of these challenging issues in neuronal K_v7 channels, a highly pathophysiologically relevant family of VGKCs whose macroscopic current gating behavior is characterized by extremely slow activation and deactivation kinetics. Using the cut-open vaseline gap voltage-clamp technique in Xenopus oocytes expressing neuronal K_v7 channels, we provide the first evidence that gating currents can be faithfully recorded from K_v7.4 and K_v7.5 channels, and we describe here their general features.

Results

Effect of a 10°C increase in the recording temperature on K_v7.2-5 ionic currents. Homomeric channels...
formed by Kv7 subunits are characterized by their slow gating. Since the ability to record gating currents is critically dependent on the speed of the gating charge movement, in a first series of experiments we attempted to accelerate the gating process by increasing the recording temperature. In fact, temperature is known to have important effects on channel gating kinetics and on gating charge movements, although the intrinsic temperature sensitivity of this process varies widely among different channels.34,35 In particular, the effect of temperature on steady-state voltage-dependence and kinetics of activation, as well as on the maximal current, were evaluated for homomeric channels formed by each neuronal Kv7 subunit expressed in Xenopus oocytes.

The upper panel of Figure 1 shows macroscopic ionic currents from homomeric Kv7.2-5 channels recorded at 18°C. All four channel subtypes displayed voltage-dependent and K+-selective currents characterized by a rather slow time course of activation and deactivation, and a threshold for current activation around -40 mV; the size of the macroscopic current was the smallest for channels encoded by the Kv7.3 gene. Furthermore, Kv7.4 channels displayed the slowest activation kinetics. A 10°C increase in the recording temperature (from 18°C to 28°C) altered the activation kinetics of all four channels, with Kv7.4 showing the largest effect (Fig. 1, lower). In order to quantify the voltage-dependence of activation for each channel, conductance (G) values were calculated as described in the Materials and Methods section, expressed as a function of the applied voltages, and fitted to a Boltzmann equation. Figure 2 shows the normalized G/V curves for each channel subtype recorded at 18°C and 28°C; the resulting \(V_{1/2} \) and \(k \) values are listed in Table 1. A 10°C increase in recording temperature failed to cause large changes in the steady-state voltage-dependence of the macroscopic currents in Kv7.4 and Kv7.5 channels. Kv7.2 channels showed a significant 8 mV hyperpolarizing shift in \(V_{1/2} \) together with a decrease in the slope factor \(k \). A decrease in the slope factor \(k \) was also observed in Kv7.3 channels, without significant changes in \(V_{1/2} \). Moreover, increasing the recording temperature caused a significant (\(p < 0.05 \)) increase in the size of the macroscopic current only for Kv7.4 channels (about 250%, although this number may be smaller because at low temperature the currents had not settled), with Kv7.2 and Kv7.5 channels showing a similar trend (about 50% increase), although these effect did not reach statistical significance (\(p > 0.05 \)).

Kinetic analysis of the activation process revealed a dramatic decrease in the activation time constants (\(\tau \)) by increasing temperatures for all neuronal Kv7 channels, with \(Q_{10} \) values of 3.8, 4.1, 8.3 and 2.8 for Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels, respectively (Fig. 3). Therefore, Kv7.4 channels, in addition to the previously reported increase in maximal current size, also showed the highest temperature sensitivity in their activation kinetics.

Gating currents from Kv7.4 and Kv7.5 channels. General features. Because of the small expected size of the gating currents, one of the most challenging technical issues for gating current recordings is the need to completely suppress the ionic currents; for K+-channels, this requires the addition of blockers and/or the absence of permanent ions, or the use of mutant channels unable to permeate but still able to give rise to gating currents.36 Therefore, in the present experiments, intracellular and extracellular solutions in which K+ ions were substituted with iso-osmolar concentrations of the pore blocker TEA were used; however, despite the well-known differences in TEA blocking affinity among various neuronal

Table 1. Steady-state activation and size of the macroscopic currents carried by neuronal Kv7 channels expressed in Xenopus oocytes and recorded at 18°C and 28°C

<table>
<thead>
<tr>
<th>Channel</th>
<th>(V_{1/2}) (mV)</th>
<th>(k) (e/fold)</th>
<th>I at +40 mV (pA)</th>
<th>(V_{1/2}) (mV)</th>
<th>(k) (e/fold)</th>
<th>I at +40 mV (pA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kv7.2</td>
<td>-30.4 ± 0.8</td>
<td>8.2 ± 0.5</td>
<td>968.20 ± 208.32</td>
<td>-38.7 ± 0.8</td>
<td>5.5 ± 0.4</td>
<td>1571.58 ± 309.47</td>
</tr>
<tr>
<td>Kv7.3</td>
<td>-41.9 ± 0.9</td>
<td>7.4 ± 0.6</td>
<td>153.62 ± 40.16</td>
<td>-46.5 ± 1.3</td>
<td>4.9 ± 0.7</td>
<td>175.41 ± 42.71</td>
</tr>
<tr>
<td>Kv7.4</td>
<td>-12.1 ± 1.4</td>
<td>12.7 ± 0.7</td>
<td>677.83 ± 181</td>
<td>-16.7 ± 1.4</td>
<td>10.7 ± 0.6</td>
<td>1736.45 ± 221.05*</td>
</tr>
<tr>
<td>Kv7.5</td>
<td>-42.9 ± 2.4</td>
<td>6.9 ± 1.7</td>
<td>547.40 ± 56.84</td>
<td>-39.2 ± 0.6</td>
<td>6.9 ± 0.7</td>
<td>849.94 ± 277.48</td>
</tr>
</tbody>
</table>

*values significantly different (\(p < 0.05 \)) from those recorded at 18°C.
Kv7 subunits, under these recording conditions, full blockade of the ionic currents was not achieved (data not shown). Therefore, we also exploited the strong sensitivity to blockade by extracellular Ba2+ ions of neuronal Kv7 channels, and added 2 mM Ba2+ to the extracellular solution.

Figure 4A shows the current traces evoked by depolarizing pulses from -80 to +60 mV (10 mV steps) recorded in oocytes expressing Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels at 28°C using the previously described intracellular and extracellular solutions. While no active voltage-dependent currents could be detected from uninjected oocytes and from oocytes expressing Kv7.2 and Kv7.3 channels, fast and transient time- and voltage-dependent currents could be clearly seen from Kv7.4- and Kv7.5-expressing oocytes. These currents were outwardly directed upon depolarization, and inwardly directed upon return to hyperpolarized voltages. During depolarization, the outward currents showed a quasi-instantaneous activation, followed by a decay, which was faster during stronger depolarization; by contrast, the inward currents recorded upon repolarization showed a rising phase followed by a slower time-dependent decay. These characteristics, together with the observation that similar currents were not detected in uninjected oocytes or in oocytes expressing Kv7.2 or Kv7.3 channels, suggested that these currents were related to the expression of Kv7.4 or Kv7.5 channels in the oocyte membrane, and that they represented the gating currents from these channels; the transient outward and inward currents recorded under these conditions would arise from the ON (QON) and OFF (QOFF) gating charge movement for these channels, respectively. For Kv7.4 channels, this conclusion appears also to be supported by the direct correlation between the size of the instantaneous transient currents and the macroscopic ionic currents. Gating charge was calculated as described in the Materials and Methods section, after ionic current blockade.

Figure 4C shows the current traces elicited at +40 mV; the pooled results obtained in oocytes expressing different neuronal Kv7 channels are shown in **Figure 4C**. While the amount of charge calculated in Kv7.2- and Kv7.3-expressing oocytes was not significantly different from those of uninjected oocytes, QON values of Kv7.4 and Kv7.5 channels were 1.34 ± 0.34 and 0.79 ± 0.20 nC, respectively (p < 0.05 when compared to uninjected controls).

In addition, although the simultaneous expression of Kv7.2 and Kv7.3 subunits is known to generate ionic currents which are larger than those recorded upon expression of Kv7.2 or Kv7.3 subunits alone, possibly as a consequence of an increased subunit expression in the membrane, no gating currents could be recorded upon Kv7.2 and Kv7.3 heteromeric expression (QON values were 0.09 ± 0.06 nC, n = 8; p > 0.05 vs. controls). Similar (negative) results were also obtained upon expression of the chimeras Kv7.3(TD;Q1) and Kv7.3(P;Q1), or of the Kv7.3 A315T mutant (data not shown), all constructs generating larger ionic currents than wild-type Kv7.3.

Table 2. Estimate of the number of functional Kv7.2-5 channels expressed from macroscopic current recordings in Xenopus oocytes

<table>
<thead>
<tr>
<th>Channel</th>
<th>P<sub>o</sub></th>
<th>i (pA) at 0 mV</th>
<th>Single-channel conductance (g, pS)</th>
<th>Macroscopic current measured at 0 mV (nA)</th>
<th>Estimated channel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kv7.2</td>
<td>0.17</td>
<td>0.55</td>
<td>6.2</td>
<td>548</td>
<td>~5.800.000</td>
</tr>
<tr>
<td>Kv7.3</td>
<td>0.89</td>
<td>0.64</td>
<td>8.5</td>
<td>95</td>
<td>~166</td>
</tr>
<tr>
<td>Kv7.4</td>
<td>0.07</td>
<td>0.21</td>
<td>2.1</td>
<td>286</td>
<td>~19,500.000</td>
</tr>
<tr>
<td>Kv7.5</td>
<td>0.17</td>
<td>0.19</td>
<td>2.2</td>
<td>402</td>
<td>~12,500.000</td>
</tr>
</tbody>
</table>

Table 2. Estimate of the number of functional Kv7.2-5 channels expressed from macroscopic current recordings in Xenopus oocytes.

The ability to resolve gating currents is critically dependent on channel density within the membrane. This is a major potential limitation for Kv7 channels whose plasma membrane/cytosol expression ratio is relatively low. The fact that in the present recordings gating current could be only detected in Kv7.4- and Kv7.5-expressing oocytes, appears to suggest that the density of these channels in the oocyte plasma membrane is higher than that of Kv7.2 and Kv7.3. This view seems to be supported by the data shown in Table 2, where the putative number of channels expressed in the membrane is calculated from an independent measurement, namely the ionic current density. The maximal
A 18°C B 28°C

C

well resolved around threshold potentials and its time constant decreased at more depolarized membrane potential values (Fig. 5D). By contrast, QOFF activated following a short delay (showing a rising phase), before a much slower deactivation occurred. QOFF deactivation, whose kinetics was too slow to be analyzed, did not appear to change significantly when more depolarized membrane potentials were applied during the test pulses. Given the slow QON and QOFF decays at 18°C, which substantially impeded an exhaustive analysis of charge movement as a function of voltage at this temperature, QON/V and QOFF/V curves were not evaluated; nevertheless, it appears as, at very depolarized values of membrane potential (+60 mV), the maximal QON and QOFF values were similar, indicating charge conservation (Fig. 5E).

Increasing the recording temperature from 18°C to 28°C allowed to detect significant amounts of QON when the cells were depolarized at membrane potential values above -60 mV (Fig. 5B); at this higher recording temperature, QON decay kinetics were faster (Fig. 5D), whereas, similarly to 18°C, QON rising phase was time independent (almost instantaneous). When repolarized to -110 mV, QOFF showed a clear rising phase, particularly evident when the potential values during the pulses were more positive than 0 mV. Compared to the 18°C recordings, QOFF decay appeared to be markedly accelerated.

Given that KV7.4-expressing oocytes gave rise to the largest gating currents, subsequent experiments were aimed at defining in more detail their kinetic and steady-state properties.

Gating currents from KV7.4 channels. Effect of temperature. Representative KV7.4 gating currents recorded in response to variable test potentials at 18°C and 28°C are shown in Figure 5A and B, respectively. At 18°C, and in the presence of 2 mM Ba2+, small QON and QOFF gating currents appeared around -40 mV (Fig. 5A); QON and QOFF values increased at more depolarized potentials (from -40 mV to +80 mV), reaching saturation around +60 mV. While the resolution of QON rising kinetics was limited by the speed of the clamp, its subsequent decay was much slower and delay (showing a rising phase), before a much slower deactivation occurred. QOFF deactivation, whose kinetics was too slow to be analyzed, did not appear to change significantly when more depolarized membrane potentials were applied during the test pulses. Given the slow QON and QOFF decays at 18°C, which substantially impeded an exhaustive analysis of charge movement as a function of voltage at this temperature, QON/V and QOFF/V curves were not evaluated; nevertheless, it appears as, at very depolarized values of membrane potential (+60 mV), the maximal QON and QOFF values were similar, indicating charge conservation (Fig. 5E).

Increasing the recording temperature from 18°C to 28°C allowed to detect significant amounts of QON when the cells were depolarized at membrane potential values above -60 mV (Fig. 5B); at this higher recording temperature, QON decay kinetics were faster (Fig. 5D), whereas, similarly to 18°C, QON rising phase was time independent (almost instantaneous). When repolarized to -110 mV, QOFF showed a clear rising phase, particularly evident when the potential values during the pulses were more positive than 0 mV. Compared to the 18°C recordings, QOFF decay appeared to be markedly accelerated.

Figure 5C shows the voltage-dependence of the absolute values of QON and QOFF time integrals recorded at 28°C, fitting the experimental values of the QON/V and QOFF/V curves with a Boltzmann equation, resulted in $V_\text{1/2}$ and k values of -26.3 ± 2.3 and 12.6 ± 1.2 for QON/V, and -27.6 ± 1.7 and 14 ± 1.1 for QOFF/V. Also, the fact that the maximal absolute values of ON and OFF charges calculated at depolarized membrane potential values (+60 mV) were similar, clearly indicated the lack of OFF gating charge immobilization. Moreover, at +60 mV, maximal QON and
of the gating charge in KV7.4 channels is moved among closed states, despite such intrinsic limitation, these kinetic data suggest most of Ba2+ ions appeared to exert complex effects on KV7.4 channels, causing a dramatic slowing down of current activation kinetics (the activation \(\tau \) at +40 mV were 191 ± 9.5 ms and 1465 ± 510 ms in the absence and in the presence of 2 mM extracellular Ba2+, respectively; n = 3–6), together with a >50 mV rightward shift in the apparent steady-state voltage-dependence of activation (Fig. 6B); these effects appeared qualitatively similar to those previously described for KV7.1 channels40 (see discussion).

Despite these effects, direct comparison of the steady-state properties of the G/V curve with those of the Q/V curve measured under identical conditions (in the presence of 2 mM Ba2+ ions in the extracellular solution) shows that the Q/V curve displayed a \(V_{1/2} \) value at least 50 mV more negative than that of the G/V curve. It is important to note that even when the Q/V curve (obtained with 2 mM Ba2+) was compared to the G/V curve recorded in the absence of Ba2+, a significant 10 mV negative shift of the Q/V curve to more hyperpolarized potentials was observed. These results show that there is significant charge movement among closed states.

Finally, Figure 6C shows KV7.4 gating and ionic current kinetics on the same time scale at +40 mV. Ionic currents were recorded in control solution (no external blocker added); gating currents were recorded in TEA-based solutions plus 2 mM Ba2+. Even despite such intrinsic limitation, these kinetic data suggest most of the gating charge in KV7.4 channels is moved among closed states, well before channel opening, in agreement with the steady state data shown in Figure 6B.

Discussion

KV7 channels achieve their specific functional role in cellular excitability control by means of a precise regulation of their gating properties; therefore, investigation of the molecular mechanisms controlling gating appears crucial to our understanding of KV7 channels pathophysiological role. Since gating currents measurements represent a direct measure of VSD displacement in response to changes in the membrane electric field,41 the aims of this work have been to record gating currents from homomeric neuronal KV7 channels expressed in Xenopus oocytes using the open-oocyte vaseline-gap technique,42 to find the appropriate experimental conditions allowing to characterize their kinetic and steady-state properties, and to correlate these properties with those of the ionic currents.

KV7 channels are characterized by their slow gating; activation and deactivation time constants, when measured at extreme depolarizing or hyperpolarizing potentials, respectively, are in the range of 20–100 ms.43,44 This fact, together with the low abundance of channels in the plasma membrane relative to the cytoplasm,42,45 is a major challenge when attempting to measure gating current. In the present work, gating currents were clearly detected...
in *Xenopus* oocytes expressing Kv7.4 and Kv7.5 channels, whereas homeric Kv7.2 or Kv7.3, as well as heteromeric Kv7.2/Kv7.3 channels, failed to give rise to currents attributable to VSD displacement within the membrane electric field. These results, in large agreement with those derived from calculations of the number of functional channels from macroscopic and single channel recordings, indicate that, in *Xenopus* oocytes, the membrane density of functional Kv7.4 and Kv7.5 channels is considerably higher than that of Kv7.2 and Kv7.3; also in mammalian cells, functional Kv7.4 channel density appears 30–300 times higher than that of Kv7.2 or Kv7.3 channels.50 However, caution should be exercised when calculating channel densities from current measurements, since the results from biochemical and optical techniques in both *Xenopus* oocytes and mammalian cells have revealed that, despite large differences in current sizes, the plasma membrane density of channel subunits appears rather similar among different Kv7 members.54,55 These results suggest that most Kv7 channels may be present in the plasma membrane in a functionally silent (non-conductive) state;50 for Kv7.3, specific structural constraints within the pore act as crucial regulators of the ratio among conductive and non-conductive channels at the plasma membrane, since mutations affecting the conduction pathway (such as the replacement of the alanine at position 315 with a threonine) can dramatically influence such parameter, leading to a large increase in current size. Nevertheless, in our experiments, we were unable to detect gating currents not only from wild-type Kv7.3, but also from Kv7.3 A315T mutant channels, suggesting that mechanisms additional to pore conformation, possibly related to homomers/heteromers formation or glycosylation,43 retention/retrieval signals,51 or interaction with intracellular regulators such as calmodulin,52 phosphatidylinositol 4,5-bisphosphate,53 or ankyrin-G,54 might contribute to the differential plasma membrane density of functional neuronal Kv7 subunits.

Transient outward and inward currents recorded upon depolarization and subsequent repolarization, respectively, from Kv7.4-expressing oocytes after iononic current blockade with TEA and Ba2+ can be regarded as gating currents because they were never observed in un.injected oocytes or, as previously mentioned, in Kv7.2- and Kv7.3-expressing oocytes, their time integral well correlated with the size of the ionic current, and they had some typical properties of gating currents. These include: (1) an increased size of the time integrals of both outward and inward currents with more depolarized potentials, reaching saturation around 0 mV; (2) a faster decay of the transient outward current with increasing voltages; (3) a rising phase in the inward current evoked upon repolarization to negative potentials after depolarizations to values >0 mV. These characteristics allowed to conclude that the transient outward and inward currents recorded from Kv7.4-expressing oocytes represent the Qon and the Qoff gating currents from Kv7.4 channels, respectively.

In these experiments, Kv7.4 Qon and Qoff were recorded at 28°C, since temperature is known to speed-up channel gating, thus improving the resolution of slow kinetic processes;47 in fact, Qon and the Qoff were also recorded at 18°C, although they displayed markedly slower kinetics. The estimated Qoff for Kv7.4 activation was 8.3, the highest among neuronal Kv7 channels and similar to that of Shaker B channels (>4)34 and of KCNE1/Kv7.1 channels (≈7.3);55 in agreement with these studies, no significant changes in the voltage-dependence of channel activation were observed between 18°C and 28°C. Because of the high Qoff value, Kv7.4 macroscopic currents required several seconds to reach steady-state conditions at 18°C; moreover, at lower temperatures, gating current kinetics (Qoff in particular) were poorly resolved.

For some preparations, including the gating currents from squid axon Na+ channels,56 and those from K+ currents from Drosophila and rat brain expressed in oocytes,43,57 the Qoff failed to quickly recover at the end of a depolarizing pulse, a phenomenon known as charge immobilization. Charge immobilization has been mostly linked to channel entry in an inactivated state, either from the open,24 or from the closed state (such as in skeletal muscle Na+ channels),58 on the other hand, charge immobilization is absent in the gating currents recorded from channels carrying non-inactivating currents, such as Kv2.1,25 inactivation removed Shaker B,67 and EAG channels.69 In the present experiments, the maximal absolute values of the Qon and Qoff gating currents from oocytes expressing Kv7.4 channels were identical, suggesting that charge immobilization did not occur. This may correlate with the absence of macroscopic current inactivation within the short (70 ms) durations of our depolarizing pulses; in fact, much longer (>20 sec) pulses were needed to promote inactivation in Kv7.4 and Kv7.5 channels.60

As anticipated, one characteristic feature of the macroscopic currents carried by Kv7.4 channels is their slow activation kinetics; the observed fast decay of Qoff with respect to the slow ionic current activation kinetics suggests that there are rate limiting steps following the fast charge movement mostly occurring in transitions among closed states. Thus, closed states in the vicinity of the open state carry small amount of charge or they are too slow to be detected. This result appears consistent with the idea that slow VSD movement during channel activation do not account for the slow kinetics of Kv7.4 currents, which are mainly due to the presence of slower and less voltage-dependent transitions closer to the open state; this view seems strongly supported by the observation that, particularly after stronger depolarizations leading to channel opening, Qoff return was delayed.

The hypothesis that, in Kv7.4 channels a large fraction of the voltage-dependence occurs in transitions between closed states seems also consistent with the more negative position of the Qon/N curve versus the G/V curve along the voltage axis. However, it should be noticed that, in order to achieve a significant blockade of the Kv7.4 macroscopic currents, 2 mM Ba2+ was added to the TEA-based extracellular recording solution. Ba2+ ions, in contrast to TEA, which behaves in most instance as a pure open-channel blocker,41 are known to exert complex effects on VGKCs,61–63 often leading to dramatic changes of several components of the gating process. Although Ba2+ block has not been studied in detail in neuronal Kv7 channels, Gibor et al.46 recently reported that external Ba2+ interacts with cardiac Kv7.1 channels with two sites, both located in the conduction pathway: one deep in the pore and responsible for a voltage-dependent block of the conduction, and another more superficial affecting channel gating with only minor effect on K+ conduction. Similarly, in rod photoreceptors of tiger salamanders, the conductance of Iks, a voltage-dependent K+ current that shows many similarities to Ikur, was reduced and shifted
toward more positive potentials by external Ba2+. Qualitatively similar results were observed in our experiments, since the addition of 2 mM extracellular Ba2+ caused a voltage-dependent block of K\textsubscript{V7.4} macroscopic currents, and led to an apparent positive shift of their voltage-dependence of at least 50 mV. As we do not know whether and by what extent Ba2+ might be affecting the voltage dependence of the gating current as compared to the ionic current, we cannot establish at present an exact relationship between gating and conduction. However, even if we consider the extreme case that Ba2+ would not affect the kinetic and steady-state properties of the gating currents, comparison of the ionic currents without Ba2+ and the gating currents in the presence of Ba2+ shows that there is charge movement at potentials where the channels are not conducting, a clear indication that a significant amount of charge is moved among closed states. The existence of distinct channel conformations corresponding to different closed states has been recently proposed for K\textsubscript{V7.1} channels on the basis of homology modeling results.

In conclusion, the present results describe for the first time the gating currents from K\textsubscript{V7.4} and K\textsubscript{V7.5} channels expressed in Xenopus oocytes. Mutations in four of the five members of the K\textsubscript{7} channel family are responsible for human channelopathies, with phenotypical consequences ranging from neonatal epilepsy (K\textsubscript{V7.2} and K\textsubscript{V7.3}), to cardiac arrhythmias (K\textsubscript{V7.1}), to deafness (K\textsubscript{V7.4}).

Materials and Methods

Isolation of Xenopus oocytes. The dissociation, maintenance and microinjection of Xenopus oocytes followed standard procedures. Briefly, ovarian lobes were surgically removed from adult female Xenopus frogs and individual oocytes dissociated by enzymatic treatment with collagenase (type II; 1 mg/ml) for 60 min in a Ca2+-free solution. Once dissociated, Ca2+ was reintroduced in the oocyte-bathing solution and the oocytes were stored at 18°C for use on the following day.

cDNA transcription and oocyte injection. K\textsubscript{V7.2}, K\textsubscript{V7.3} and K\textsubscript{V7.4} cDNAs were cloned in pTLN vectors, whereas K\textsubscript{V7.5} was in pSRC5. These plasmids were linearized using MluI (K\textsubscript{V7.2} and K\textsubscript{V7.4}), HpaI (K\textsubscript{V7.3}) or ApaLI (K\textsubscript{V7.5}) restriction enzymes, and transcribed in vitro with a commercially available kit (Ambion, Austin, TX) using SP6 (K\textsubscript{V7.2}, K\textsubscript{V7.3} or K\textsubscript{V7.4}) or T7 (K\textsubscript{V7.5}) RNA polymerases. RNAs were quantified spectrophotometrically and stored at -80°C. Xenopus oocytes were microinjected with 50 nl of 1 μg/μl RNA. After injection, the oocytes were incubated at 18°C in a solution containing 10 mM NaCl, 83 mM KCl, 1 mM MgCl\textsubscript{2}, 1.8 mM CaCl\textsubscript{2} and 5 mM Hepes, pH 7.5 with NaOH, supplemented with gentamycin.

Electrophysiology. Ionic and gating currents from Xenopus oocytes were measured 3–4 days after RNA injection, using the baseline-gap cut-open voltage-clamp (COVC) technique. The temperature was controlled by a Peltier device with negative feedback using a thermistor as a temperature sensor.

For ionic current recordings, the external and internal solutions contained (in mM): 101 N-Methyl-D-Glucamine (NMG), 12 KOH, 4 Ca(OH)\textsubscript{2}, and 20 Hepes, pH 7.4 with methane sulfonic acid (MES acid), and 120 KOH, 2 EGTA and 20 Hepes, pH 7.4 with MES acid, respectively. For gating current recordings, the external and internal solutions contained (in mM): 100 tetraethylammonium-hydroxide (TEA-OH), 2 Ca(OH)\textsubscript{2}, 2 BaCl\textsubscript{2} and 20 Hepes, pH 7.4 with MES acid, and 115 TEA-OH, 2 EGTA and 20 Hepes, pH 7.4 with MES acid, respectively. Oocytes were permeabilized by adding 0.3% saponin to the lower chamber for ~1 min. Microelectrodes were pulled from borosilicate glass capillary tubes to obtain a resistance of 0.1–0.5 MΩ when filled with 3 M CsMES +20 mM CsCl.

Ionic currents from expressed channels were activated by holding the oocytes at -90 mV (holding potential = -90) and then applying pulses of 1.5 s durations from -100 to +40 mV, in increments of 10 mV, returning to the holding potential. Capacity currents were compensated by analog circuitry and subtracted on-line by using a p/-8 protocol from a holding potential of -80 mV; in some cases, the subtraction was done off-line. Data were filtered at 1–2 kHz and sampled at 2–4 kHz. For gating current recordings, oocytes were maintained at 0 mV for 30 min to deplete intracellular K+; after this period, the cells were exposed to the TEA- and Ba2+-based solutions, and the following protocol was applied: from a holding potential of -90 mV, a short (20 ms) pulse to -110 mV was followed by a series of progressively increasing depolarizations (from -80 mV to +80 mV) of 70 ms duration, before a final 70 ms step to -110 mV was applied. Data were filtered at 5 kHz and sampled at 50 kHz. Capacitance currents were compensated by analog circuitry and subtracted on-line by using a p/-8 protocol from a subtracting holding potential of -100 mV.

Data analysis and statistics. In ionic current recordings, extracellular K+ accumulation during the depolarizing pulse caused a progressive rise in inward current size upon hyperpolarization, thereby impeding tail current analysis, conductance (G) values were calculated as follows: given \(V_1\) the voltage in the depolarizing pulse and \(V_2\) the return potential voltage, the current were measured at the end of the \(V_1\) pulse (\(I_1\)) and at the \(V_2\) tail peak (\(I_2\)). Then:

\[
I_1 = G(V_1 - V), \quad I_2 = G(V_2 - V)
\]

where \(V\) is the K+ equilibrium potential; \(G\) is the same because it has no time to change from the end of the pulse to the beginning.
of the tail. From these equations, G can be calculated according to the following equation:

$$I_1 - I_2 = G(V_c - V_j)$$

The G values obtained by this method are thus independent on the K′ equilibrium potential (therefore not influenced by changes in V_c caused by K′ accumulation) and are only minimally influenced by fast and voltage-dependent outward current blockade by intracellular cations. Conductance values were expressed as a function of membrane potential, and the data were then fit to a Boltzmann distribution of the following form:

$$y = \frac{\max/[1 + \exp(V/V_{1/2} - V)/k]}{k}$$

where V is the test potential, V_{1/2} is the half-activation potential, and k is the slope factor. Activation kinetics were analyzed by fitting the current traces elicited by depolarization with a single-($y = A \exp(-t/\tau_f) + c$) or a double-exponential equation

$$y = A_1 \exp(-t/\tau_f) + A_2 \exp(-t/\tau_s) + c$$

where A_1 and A_2 indicate the amplitude of the fast and slow exponential components, \(\tau_f\) and \(\tau_s\) the time constants of each component, and c is an offset value. For the traces fit with a double exponential, \(\tau_c\) was calculated with the following equation:

$$\tau_c = (\tau_f A_1 + \tau_s A_2)/(A_1 + A_2)$$

thus obtaining a single time constant representing the weighed average of the slow and fast components.

In gating current recordings, gating charge (Q) was calculated as the time integral of the sensing currents at each potential after leak subtraction. Q was plotted as a function of membrane potential, and the data were then fit to the previously described form of the Boltzmann equation. For both macroscopic and gating current recordings, data acquisition and analysis were carried out with in-house developed software. Data are expressed as Means ± SEM of the given number of experiments (n). Data sets were compared using matched Student’s t tests or, if necessary, with one-way ANOVA, followed by the Newman Keuls’ test. Statistically significant differences were accepted when p was <0.05.

Acknowledgements

We are deeply indebted to Prof. Thomas J. Jentsch (Department of Physiology and Pathology of Ion Transport, Leibniz-Institut für Molekulare Pharmakologie, Berlin-Buch, Germany), Alvaro Villarreal (Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, Leioa, Spain), Mark Shapiro (Department of Physiology,UTHSCUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA), and Michael Schwake (Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany) for sharing plasmids. The Authors appreciate the help from Fabiana Vasconcelos Campos and Walter Sandtner for initial help with electrophysiology and molecular biology experiments, respectively, at the University of Chicago. The present study was supported by grants from: Telethon GP07125 and PRIN 2007 to Maurizio Taglialatela, E-Rare JTC 2007 to Maria Roberta Cilio, and by NIH grant GM30376 to Francisco Bezanilla.

References

