Large-conductance Ca\(^{2+}\)- and voltage-activated K\(^{+}\) (BK) channels are involved in a large variety of physiological processes. Regulatory \(\beta\)-subunits are one of the mechanisms responsible for creating BK channel diversity fundamental to the adequate function of many tissues. However, little is known about the structure of its voltage sensor domain. Here, we present the external architectural details of BK channels using lanthanide-based resonance energy transfer (LRET). We used a genetically encoded lanthanide-binding tag (LBT) to bind terbium as a LRET donor and a fluorophore-labeled iberiotoxin as the LRET acceptor for measurements of distances within the BK channel structure in a living cell. By introducing LBTs in the extracellular region of the \(\alpha\)- or \(\beta\)-subunit, we determined (i) a basic extracellular map of the BK channel, (ii) \(\beta\)-subunit-induced rearrangements of the voltage sensor in \(\alpha\)-subunits, and (iii) the relative position of the \(\beta\)-subunit within the \(\alpha/\beta\)-subunit complex.

Important physiological processes involve Ca\(^{2+}\) entry into cells mediated by voltage-dependent Ca\(^{2+}\) channels. This divalent cation influx is essential for life because it permits, for example, the adequate functioning of smooth muscle or neurosecretion to occur. Some mechanism must be put into action, however, to control Ca\(^{2+}\) influx, either to dampen or to stop the physiological effects of the cytoplasmic increase in Ca\(^{2+}\). In many cases, this dampening mechanism is accomplished by one of the most broadly expressed channels in mammals: the large-conductance Ca\(^{2+}\)- and voltage-activated K\(^{+}\) (BK) channel (1–3). Because there is a single gene coding for the BK channel (Slowpoke KNCMA1), channel diversity must be a consequence of alternative splicing and/or interaction with regulatory subunits. In fact, both mechanisms account for BK channel diversity, but the most dramatic changes in BK channel properties are brought about through the interaction with regulatory subunits, membrane-integral proteins, denominated BK \(\beta\)-subunits (\(\beta\)-\(\beta\)) (4–7) and the recently discovered \(\gamma\)-subunits (\(\gamma\)-\(\gamma\)) (8, 9).

Structurally, the BK channel is a homotetramer of its pore-forming \(\alpha\)-subunit and is a member of the voltage-dependent potassium (Kv) channel family. Distinct from Kv channels, however, BK channel subunits are composed of seven transmembrane domains S0–S6 (10, 11). Little is known about the detailed structure of the membrane-spanning portion of the BK channel, or of the \(\alpha/\beta\)-subunit complex. Here, we used a variant of Förster resonance energy transfer (FRET), called lanthanide-based resonance energy transfer (LRET), to determine the positions of the N terminus (NT) and S0, S1, and S2 transmembrane segments of the \(\alpha\)-subunit of the BK channel, as well as the position of the \(\beta\)-subunit in the \(\alpha/\beta\)-subunit complex. LRET uses luminescent lanthanides (e.g., Tb\(^{3+}\)) as donor instead of conventional fluorophores. This technique has been successfully used to measure intramolecular distances and to track voltage-dependent structural changes in voltage-dependent K\(^{+}\) and Na\(^{+}\) channels (12–16). The advantages of this technique over FRET have been discussed in detail elsewhere (17), and only its highlights will be given here. Briefly, the isotropic emission of Tb\(^{3+}\) ensures that the maximum error in distance estimation due to the orientation factor (\(k\)) does not exceed ±10% in the range of 10–120 Å (17). Because Tb\(^{3+}\) has a spiked emission spectrum, it is possible to isolate the sensitized emission (SE) of the acceptor with relative ease by using an adequate optical filter. Additionally, we used the genetically encoded lanthanide-binding tag (LBT) to chelate Tb\(^{3+}\) donor within the protein structure (18) (Fig. L4). Because the LBT-Tb\(^{3+}\) emission decay has a well-defined time constant of ∼2.4 ms, the donor-only (DO) emission (i.e., the donor emission in the absence of the acceptor) is very specific and distinguishable from background (13, 18, 19). Also, because the LBT is incorporated into the backbone of the protein, the donor becomes tied to the structure of the channel, likely decreasing the uncertainty of the donor position. Any distortion of the LBT structure that modifies Tb\(^{3+}\) accessibility to water will decrease its decay time constant. Therefore, by measuring the Tb\(^{3+}\) decay, it is possible to infer whether the LBT remains intact in the final structure. Moreover, the crystal structure of the LBT has been determined (18), making it possible to perform molecular dynamics (MD) simulations of the LBT-BK chimeric channels using homology-based models. The flexibility of the LBT-Tb\(^{3+}\) complex would place the Tb\(^{3+}\) atom at 5–8 Å from the LBT insertion site, giving us a concise}

\(\beta\)-subunit–induced structural rearrangements of the Ca\(^{2+}\) - and voltage-activated K\(^{+}\) (BK) channel

Juan P. Castilloa,b,1, Jorge E. Sánchez-Rodriguezc,d,1, H. Clark Hydec,1, Cristian A. Zaelzer3, Daniel Aguayoa,e, Romina V. Sepúlvedaa, Louis Y. P. Luk1, Stephen B. H. Kentc,1, Fernando D. Gonzalez-Niloa,e, Francisco Bezanillaa,c,2, and Ramón Latorre1,2

aCentro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile; bDepartamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; cDepartment of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637; dDepartamento de Física, Universidad de Guadalajara, Guadalajara, Jalisco, 44430, Mexico; eUniversidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago 8370146, Chile; and fDepartment of Chemistry, University of Chicago, Chicago, IL 60637

Contributed by Ramon Latorre, April 23, 2016 (sent for review February 25, 2016; reviewed by Christopher J. Lingle and Ricardo Olcese)

Significance

Large-conductance Ca\(^{2+}\)- and voltage-activated K\(^{+}\) (BK) channels play many physiological roles, ranging from the maintenance of smooth muscle tone to the modulation of alcohol tolerance. In most cases, this physiological versatility of the BK channel is due to the association of the pore-forming \(\alpha\)-subunit with \(\beta\)-subunits. Therefore, it is of importance to know what the structural consequences of this association are. Here, using lanthanide-based resonance energy transfer, we were able to determine the extracellular position of transmembrane segments S0–S2 with and without the \(\beta\)-subunit and the position of the two transmembrane segments of the \(\beta\)-subunit in the \(\alpha/\beta\)-subunit complex. We concluded that \(\beta\) produces rearrangements of the BK voltage sensor domain.

Reviewers: C.J.L., Washington University School of Medicine; and R.O., University of California, Los Angeles.

The authors declare no conflict of interest.

1J.P.C., J.E.S.-R., and H.C.H. contributed equally to this work.

2To whom correspondence may be addressed. Email: fbezanilla@uchicago.edu or ramon.latorre@uv.cl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1606381113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1606381113

Published online May 23, 2016 | E3231–E3239
The picture of the general architecture of the external aspect of the BK channel (13).

As a reference site to locate the acceptor, we used the successful approach of labeling BK with a specific pore-blocking toxin, the scorpion toxin iberiotoxin (IbTX), which binds to the external aspect of the BK pore with high affinity (13–15, 20, 21). One of the advantages of this approach is that the relative position of the acceptor can be modeled because the structure of a related toxin, charybdotoxin (CTX), in complex with the Kv1.2/2.1 paddle chimera has been determined (22). Because the BK channels are tetramers organized in an axial fourfold symmetry around the K⁺ selective pore, the location of the toxin, and hence the location of the acceptor fluorophore, can be modeled. We synthesized IbTX in solid phase with a modified cysteine at residue 19 and labeled with BODIPY-8-chloromethane (referred to as bodipy throughout this paper) as a fluorescent probe. The short linker of bodipy reduces uncertainty in the acceptor position (Fig. 1B). The labeled toxin was then used as an acceptor for the Tb³⁺ donor emission.

We used a methodology of analysis capable of extracting the position of the four donors from the SE of the acceptor, taking advantage of the fourfold symmetry of K⁺ channels (Fig. 1C). This method has been successfully tested in Shaker K⁺ channels (13). By changing the position of the LBT motif to different residues of the channel, we constructed a map of the extracellular arrangement of the S0, S1, and S2 segments, as well as the position of the NT of the BK channel, in the absence and presence of the auxiliary β₁-subunit. In addition, by introducing the LBT in different positions of the β₁-subunit, we located this subunit with respect to the α-subunit.

Results

LRET in LBT-Containing BK Channels. We selected LBT insertion sites within the BK α- and β₁-subunits to estimate the location of the voltage sensor domain (VSD) with respect to the channel’s pore (i) in the absence of the regulatory β₁-subunit and (ii) after coexpressing the BK α/β₁-complex. Fig. 1D shows four insertion sites in the BK α-subunit that are in the extracellular face of the protein: NT (D15-LBT-S16), S0 (W22-LBT-W23), S1 (S134-LBT-S135), and S2 (D147-LBT-F148). Fig. 1D also shows insertion sites in the β₁-subunit. They are located near the C terminus of transmembrane segments TM1 (L41-LBT-Y42) and near the NT of TM2 (R150-LBT-L151). All these constructs were expressed in the membrane of Xenopus laevis oocytes and tested with electrophysiological methods to confirm that they still operate as BK channels. No major alterations were observed after introduction of the LBT motif to any α-LBT constructs reported here (Fig. S1), suggesting that insertion of the LBT motif did not change the structure of the protein. The effect of the β₁-subunit was also assessed with α-LBT
constructs, as well as for TM1 and TM2 constructs coexpressed with wild-type (WT) α-BK subunit to confirm that they maintain the α1β1-BK phenotype (Fig. S2). In addition, several LBT insertion sites were designed and tested in the very short linker region between S3 and S4 of αBK. Although these constructs produced robust macroscopic currents, donor emission signal was absent, likely because of a defective LBT-αBK structure.

All LRET experiments described below were performed holding the membrane potential at ~80 mV to ensure that all channels were closed with their voltage sensors in the resting state. LRET experiments at depolarizing voltages large enough to open the channels fully were not possible due to the high expression of the LBT-BK chimeras that precluded adequate voltage control of the oocytes at such high potentials.

We tested the DO signal from all LBT-BK constructs by exciting the sample with a short laser pulse (5 ns) at 266 nm and obtained robust luminescence decays in all cases. Fig. 2A shows the time-resolved donor emission decay from an oocyte expressing the S0 construct. The slowest component of the decay has a time constant \(\tau_D \approx 2.4 \text{ ms} \) (rate constant \(k_D \approx 417 \text{ s}^{-1} \)), which is absent in oocytes expressing WT BK channel (Fig. 2A, gray trace). This component is the expected decay of Tb\(^{3+}\) bound to LBT in the absence of acceptor (Fig. 2A, Inset). We observed less dramatic changes of LRET measurements occur in the SE kinetics (Fig. 3A). On the other hand, we observed less dramatic changes of the SE kinetics of S0, S1, and S2 (Fig. 3B–D). These results suggest that the α1β1 interaction promotes a change in the architecture of the VSD of the BK channel.

As was done for the α-subunit, two LBT constructs of the β1-subunit were engineered with insertion sites near the extracellular side of the TM1 and TM2 segments (Fig. 1D). These constructs showed SE with characteristic kinetics indicating their different locations relative to the channel structure (Fig. 3E).

Spatial Map of the Extracellular Face of the BK Channel. To retrieve quantitative information from the SE recordings, we used the symmetrical nanopositioning system (SNPS) to generate a spatial map of the different donor positions (13). This methodology assumes a pyramid-like geometric model, which considers that the

Fig. 2. LRET measurements of LBT-tagged BK constructs. (A) Representative DO emission recording from an oocyte expressing the S0 construct. The red solid line represents a three-exponential fit. The slowest component with a time constant of ~2.4 ms (red dotted line) corresponds to the decay from Tb\(^{3+}\) bound to LBT (Inset). (B) SE of the acceptor recorded after addition of IbTX-bodipy from the same oocyte of A. (Inset) Attached fluorophore acts as an LRET acceptor. Gray traces in A and B correspond to DO and SE control experiments, respectively, using WT BK α-subunit (α-BK). (C) Representative SE recorded from NT, S0, S1, and S2 constructs exhibited characteristic decay kinetics. Because there are four donors and one acceptor per channel, SE decays are composed of four energy transfer-based exponential components. Faster SE kinetics indicate that the four donors are positioned in closer proximity to the acceptor. a.u., arbitrary units.

Fig. 3. LRET-based measurements reveal a rearrangement of the BK α-subunit when coexpressed with the β1-subunit. Representative SE decays recorded from oocytes independently expressing the α-LBT constructs coexpressed with the β1-subunit: NT (A), S0 (B), S1 (C), and S2 (D). For comparison, each panel shows in gray a representative SE trace of the corresponding construct expressed without the β1-subunit. Visual inspection shows that the most dramatic changes of LRET measurements occur in the NT construct. (E) SE from oocytes independently coexpressing the WT BK α-subunit with TM1 and TM2. Different kinetics indicate that the donors of these constructs are located in different parts of the channel structure.
S1. LRET Calculations

\(z(\degree)\) shows a lateral view of donor positions for the plane projection, where differences in \(\Delta\) across the VSD. The S1 donor is the closest to the pore axis, with a radial distance of 29.2 Å. The S0 donor is located at 33.8 Å from the pore axis, between the S1 and S2 donors. Surprisingly, the NT donor appears to be far from the S0 donor, displaced by ~23 Å in the \(x-y\) plane projection. When compared against the Kv1.2/2.1-CTX structure, the NT and S2 donors present no rotational ambiguity, whereas for the S1 construct, only solution type 2 fits over the VSD structure near the top of the S1 segment (Fig. S34). Only the S0 construct displayed rotational ambiguity such that both solutions are equally probable, yet they are very close to the symmetry line (Fig. S3). Fig. S5B shows a lateral view of donor positions for the four constructs tested \((x-y\) plane projection), where differences in the relative height of the donors can be observed.

The External Architecture of the BK \(\alpha/\beta1\)-Complex. As expected by the changes observed in the SE kinetics, coexpression with the \(\beta1\)-subunit causes a change in the pattern of donor positions (Fig. 5C and D). Donor solution types were selected to be most parsimonious with respect to the results obtained in the absence of the \(\beta1\)-subunit. For instance the S2 and NT constructs showed no rotational ambiguity, whereas S1 was kept as solution type 2 for the sake of parsimony. The solution type for the S0 donor coexpressed with \(\beta1\) was selected as solution type 1 because (i) a counterclockwise rotation would place the S0 segment further into the VSD, which is not likely, and (ii) this solution type better agrees with reported interactions between the S0 segment and the TM1 or TM2 segment of the \(\beta1\)-subunit (24, 25). For the TM1 and TM2 constructs, the best choice was solution type 1; otherwise, these segments would be positioned inside the voltage sensor, a solution that has no physical meaning (Fig. 5C and Fig. S3B). The spatial map of Fig. 5C and D shows that both the TM1 and TM2 donors are positioned between adjacent subunit VSDs and in the vicinity of the S0 donor, radially closer to the pore axis by 0.4 Å and 4 Å, respectively.

We noted that by maintaining the acceptor static, the donor position of all constructs except S1 clashed with an upper height boundary equal to the height of the acceptor. Because this picture seems unlikely, we shifted the acceptor position 1 Å radially outward from the pore axis for the complete dataset in the presence of the \(\beta1\)-subunit. The result was an overall decrease in individual fit

Table 1. Donor coordinates of BK-LBT constructs determined by nanopositioning (SNPS)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Solution</th>
<th>(r) (Å)</th>
<th>(\theta) (°)†</th>
<th>(z) (Å)</th>
<th>(x_{4G}^2)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>2</td>
<td>33.8 (−1.4, +1.2)</td>
<td>1.7 (−17.8, +14.4)</td>
<td>24.4 (−3.1, +3.6)</td>
<td>1.028</td>
<td>18</td>
</tr>
<tr>
<td>S1</td>
<td>2</td>
<td>29.2 (−1.2, +1.1)</td>
<td>12.9 (−12.9, +11.6)</td>
<td>23.3 (−2.4, +2.7)</td>
<td>1.022</td>
<td>17</td>
</tr>
<tr>
<td>S2</td>
<td>2</td>
<td>38.9 (−0.8, +0.1)</td>
<td>0.0 (−14.2, +14.2)</td>
<td>37.3 (−7.4, +7.4)</td>
<td>1.025</td>
<td>11</td>
</tr>
<tr>
<td>NT</td>
<td>2</td>
<td>33.1 (−1.0, +0.3)</td>
<td>45.0 (−8.2, +8.2)</td>
<td>37.3 (−8.4, +8.3)</td>
<td>1.039</td>
<td>8</td>
</tr>
<tr>
<td>S0 + (\beta1)</td>
<td>2</td>
<td>35.1 (−1.2, +1.2)</td>
<td>10.8 (−10.8, +10.3)</td>
<td>24.3 (−2.6, +3.3)</td>
<td>1.019</td>
<td>7</td>
</tr>
<tr>
<td>S1 + (\beta1)</td>
<td>2</td>
<td>24.2 (−1.4, +1.1)</td>
<td>23.3 (−11.9, +16.9)</td>
<td>15.4 (−1.5, +1.3)</td>
<td>1.026</td>
<td>20</td>
</tr>
<tr>
<td>S2 + (\beta1)</td>
<td>2</td>
<td>43.4 (−1.2, +0.1)</td>
<td>0.0 (−10.1, +10.1)</td>
<td>37.3 (−9.6, +9.5)</td>
<td>1.027</td>
<td>5</td>
</tr>
<tr>
<td>NT + (\beta1)</td>
<td>2</td>
<td>41.9 (−1.2, +0.2)</td>
<td>0.0 (−10.9, +10.9)</td>
<td>37.3 (−9.6, +9.5)</td>
<td>1.045</td>
<td>13</td>
</tr>
<tr>
<td>(\alpha)BK + (\beta1)TM1</td>
<td>1</td>
<td>35.5 (−0.9, +0.4)</td>
<td>−22.7 (−13.3, +12.2)</td>
<td>37.4 (−7.6, +7.5)</td>
<td>1.026</td>
<td>6</td>
</tr>
<tr>
<td>(\alpha)BK + (\beta1)TM2</td>
<td>1</td>
<td>31.1 (−1.5, +1.5)</td>
<td>−27.8 (−10.1, +5.2)</td>
<td>26.4 (−4.2, +8.7)</td>
<td>1.039</td>
<td>3</td>
</tr>
</tbody>
</table>

† Rotation angle is relative to acceptor position: \((x_H,z)\) = (−2.20, −4.21,37.36) Å, in absence of \(\beta1\).

Table 1. Donor coordinates of BK-LBT constructs determined by nanopositioning (SNPS)
error and the spreading of donor positions in the z axis (Fig. S4). This operation results in a more physically meaningful picture; therefore, the reported results in Fig. 5 C and D consider the shifted position of the acceptor, although this shift implies a slight change in the acceptor position due to the presence of the β1-subunit.

The most dramatic structural rearrangement induced by the presence of the β1-subunit is the NT construct with a 29.8-Å displacement in the x-y plane. This rearrangement places the NT donor very near the new position of the S2 construct. At the same time, the S2 construct undergoes a displacement of 4.5 Å in the x-y plane away from the pore axis. The S1 construct shows a displacement toward the pore axis of 5 Å and a counterclockwise rotation of 10°. Finally, S0 moves 5.6 Å in the x-y plane with a clockwise rotation away from the S1 and S2 donors (S0 solution type 1 as a reference). Changes in the z-coordinate of each donor can also be observed. In particular, a downward displacement of the S1 donor by 7.9 Å is the most remarkable vertical shift. In contrast, NT, S0, and S2 have little change in the z-coordinate (<0.2 Å) when coexpressed with the β1-subunit. Fig. 6 summarizes the position changes of the donors in the α-subunit as a result of coexpressing the β1-subunit, as well as the position of the TM1 and TM2 donors of the β1-subunit.

Discussion
Different from all other members of the Kv channels superfamily, in BK channels, not only the S4 segment but also the S2 and S3 segments of the VSD carry the electric charges that sense the membrane electric field (26–28). The translocation of these charged residues in the membrane electric field induces conformational changes in the VSD that can be tracked with site-directed voltage-clamp fluorometry (29–31). BK channels also have the additional S0 transmembrane segment preceding the six canonical segments (10, 11). Tryptophan scanning mutagenesis in S0 and fluorescence quenching by tryptophan W203 in the S3–S4 linker suggest that the NT of the S0 segment is in close contact with the VSD (S1–S4). This interaction would modulate the equilibrium between the resting and active states of the voltage sensor (32, 33).

Little is known about the detailed structure of the transmembrane portion of the BK channel, although some initial glimpses of the channel’s structure have been given using cryoelectron microscopy at a resolution of 17 Å (34). The BK structure resolved by this technique shows a large protrusion at the periphery of the VSD at ~40 Å radial from the pore axis, which should correspond to the additional S0 helix and ~40 extracellular N-terminal residues of the BK α-subunit. This observation is in good agreement with our measurement using LRET that places the S0 donor 33.8 Å radial from the pore axis.

BK Transmembrane Segments Pattern. Information about the relative position of transmembrane segments was reported by using disulfide cross-linking experiments. There, S0 appeared to lie in close proximity to the S3–S4 loop, near the S1 and S2 segments and away from the S5 and S6 segments, based on the extent of disulfide bond formation between introduced cysteine residues (35). The best way to interpret these data was by positioning S0 surrounded by all the other transmembrane segments of the voltage sensor (S1–S4), preventing S0 from making contact with segments S5 and S6. More recently, using voltage-clamp fluorometry, it was found that a fluorescent label on the extracellular side of the S0 segment can be quenched by tryptophan W203 of the S3–S4 loop in a state-dependent manner, supporting the proximity of the S0 segment with the S3–S4 loop in the resting state (30). Using the same approach, after strategically locating the fluorescent probe and by introducing or substituting the quencher tryptophan, it was concluded that the

![Fig. 5. Spatial map of the extracellular face of the BK VSD obtained from the geometric fit to SE traces. The position of each donor is represented by colored filled circles. The 95% confidence isosurfaces are shown as transparent volumes. For the sake of clarity, the donors from only one subunit are shown. The reference point is the acceptor (black circle) near the fourfold symmetry axis. The crystal structure of the pore section from the Kv1.2/2.1 paddle chimera (transparent gray) and the modeled IbTX-bodipy (purple) are presented in the background as references. The tentative area where the bulk of the BK VSD may be located is encircled by a black line. The space-filled boundary of the Kv1.2/2.1 paddle chimera is shown as a fainter gray line. (A and B) Top and side views, respectively, of the spatial map for BK constructs in the absence of the β1-subunit. (C and D) Top and side views, respectively, of the spatial map for BK constructs in the presence of the β1-subunit. Donors from the β1-LBT constructs TM1 and TM2 are shown as cyan and orange circles, respectively. For completeness, both solution types are shown for S0 + β1, TM1, and TM2 constructs. However, the less likely solutions are rendered transparent to reinforce the fact that they appear nonparsimonious.](image-url)
S1 segment would be closer to W203 (which would be in close proximity to S0) than the S2 segment in the resting state (31). Our results place the position of the S0 donor nearly in-line between S1 and S2: a distance of 7.7 Å from S1 and 5.2 Å from S2 in the x–y plane (Fig. 5A).

The Transmembrane Segments Pattern of the BK α/β1-Complex. The BK α-subunit consists of two putative transmembrane segments joined together by a large extracellular loop (36). The BK β1-subunit increases the apparent Ca$^{2+}$ sensitivity of the channel, slows down the macroscopic activation and deactivation kinetics, and decreases the voltage sensitivity (37–44). By stabilizing the voltage sensor in its active configuration, the β1-subunit has an important effect on the BK channel’s apparent Ca$^{2+}$ sensitivity (43, 45). Therefore, it is reasonable to think that there is a close spatial relationship between the β1-subunit’s transmembrane segments and the VSD of the α-subunit. Our LRET experiments show that the α-subunit undergoes a change in the spatial pattern of its transmembrane segments when coexpressed with the β1-subunit (Fig. 5).

Using the disulfide cross-linking technique, Marx and co-workers (24, 25) also described the spatial distribution of BK transmembrane segments in the presence of the β1-subunit. Surprisingly, to best account for the results reported by Liu et al. (25), they no longer positioned the S0 segment surrounded by the other four transmembrane segments but in the periphery of the VSD facing the S3 and S4 segments. Their model does not allow direct contact of S0 with the S1 and S2 segments even though their results showed between 40% and 80% disulfide cross-linking between S0 and the S1 and S2 segments (25). In contrast, our results place the S0 segment in close proximity (<7 Å) to the S1 and S2 segments. In their work, the extent of cross-linking is only interpreted as relative differences in distances between cysteine residues, and the estimation is done a long time after cross-linking occurs. In contrast, our LRET measurements are performed in real time, with functional channels expressed in the membrane of a living cell, and the retrieved positions of donors anchored to the different transmembrane segments rely only on the modeled acceptor position and assumed fourfold channel symmetry (13).

Disulfide cross-linking between the β1-subunit and α-subunit suggested that both TM1 and TM2 segments are in close proximity to S0, S1, and S2; however, disulfide bond formation is essentially prevented for the S3 to S6 segments (24, 25). This finding is consistent with our proposed location for the TM1 and TM2 segments, which appear adjacent to the S0-NT position (Fig. 5 C and D), and show that TM1 is 2.4 Å closer to S0 than TM2 in the x–y projection. These observations could give structural support to functional coupling between the S0/NT of the BK α-subunit and the β1-subunit (46). Due to the short distance to S0, TM1 is likely making contact with the α-subunit at this point, and these contacts may be responsible for the observed changes in the biophysical properties of the BK channel when coexpressed with the β1-subunit. Also, consistent with results reported by Liu et al. (25), our LRET experiments locate the TM1 and TM2 segments at the interface of adjacent voltage sensing domains (Fig. 5C), with both segments close to each other, allowing disulfide bond formation between these two segments.

A Model Structure of the External Aspect of the BK Channel. To account for our LRET findings in the structural context, we performed an LBT position-restrained MD protocol to refine a BK homology model according to our calculated donor positions (details are provided in Experimental Procedures). The BK structural model obtained using this approach is shown in Fig. 7A. The positions of segments S0, S1, and S2 are in agreement with these segments’ interactions reported previously (35). However, in our molecular model, the S0 segment is closer to the S1 and S2 segments than to the S3 and S4 segments.

To have the complete picture, we also performed a position-restrained model of the BK channel using the donor coordinates obtained in the presence of the β1-subunit (Fig. 7B). The structural changes in the BK model due to the presence of the β1-subunit are detailed in Fig. 7 C and D, including the transmembrane segments TM1 and TM2 docked in such a way that they best match LRET results. As a measure of β1-induced conformational change, we calculated the rmsd between the two models as 2.7 Å for the whole channel, 3.3 Å considering only the VSD (S0–S4), and 0.8 Å considering only the pore segment (S5–S6). Our LRET-restrained model locates both the TM1 and TM2 segments of the β1-subunit near S0 and S1 in the space between two adjacent voltage sensors. This vicinity allows interaction between both transmembrane segments and also prevents interaction with S3–S4 segments as proposed by Liu et al. (24, 25).

The presence of the β1-subunit not only modifies the operation of the VSD but also dramatically slows the activation and deactivation kinetics (41, 43, 45, 47). The reported crucial role of the cytoplasmic domains of β-subunits (48, 49) requires close proximity of both cytoplasmic domains of the β1-subunit and the α-subunit VSDs. The molecular model proposed here for the BK α/β1-complex inferred from LRET experiments allows such interactions, given that the transmembrane segments of the α- and β1-subunits are close to each other.

Experimental Procedures

Donors and Acceptors. The LBT, sequence YIDTNNDGWYEGDELLA (18), was inserted in chosen positions of the BK channel. LBT-BK channels were constructed using standard molecular biology techniques and a site-directed mutagenesis kit (QuikChange; Stratagene). Correct insertion of LBTs was confirmed by sequencing. As the LRET acceptor, we used the fluorophore bodipy attached to the peptidic scorpion toxin IbTX, a high-affinity pore blocker of BK channels. Labeled
filters were a long-pass E515LPv2 or a band-pass DS2020m (Chroma Technology) for DO emission or SE recordings, respectively. The optical signal was detected with a gated photomultiplier tube (Hamamatsu) coupled to a custom-made current/voltage converter. Analog fluorescence signal was filtered with an eight-pole Bessel filter at either 50 kHz or 100 kHz cutoff frequency, and acquired with a sample period of 2 μs using a 14-bit analog-to-digital converter. DO and SE traces were obtained by averaging 16–25 pulses.

SE Analysis. Geometric models for all constructs were obtained by analyzing their respective SE decay measurements. The analysis was performed using the SNPS software developed by our group (13) using MATLAB (MathWorks). Briefly, the program generates a theoretical SE signal from a geometric model that takes into account the position of the four Tb-β3 donors and the single acceptor in a pyramid-like model (Fig. 4A). The program routine finds the best geometry that simultaneously fits multiple experimental SE traces of a given LBT construct and conformational state. Solution types of the geometric model were selected according to the reference K1.2.1-CTX structure. Selection was made to have maximal overlap between the donor positions and the VSD of the paddle chimera. Details of this procedure can be found in SI Text, SI. LRET Calculations.

Acceptor Position Sampling by Dihedral Angle Scan. The conformational space of bodipy within the [D19C]IbTX-bodipy-βK complex model (SI Text, SI: Molecular Modeling and MD Simulations) was sampled by scanning the fluorophore-toxinox complex dihedral angles Ψ′1, Ψ′2, Ψ′3, and Ψ′4 as described in Fig. S6A using 30° increments per dihedral (e.g., Ψ′1 = –150°, –120°, ..., 180°). The scanned sample consists of 20,736 structures, which were evaluated in terms of their van der Waals (vdW) energy to discard clashing conformations (E_vdw > 1,000 kcal/mol or atomic distances < 1.4 Å). Each of the resulting 2,390 configurations was used to report the accessible dihedral angle range of bodipy transition dipole moment (estimated as the geometric center of the chromophore’s central ring), such that each valid conformation is represented by a point, which, together, define the acceptor (cloud) position within the reference frame of the IbTX-βK complex (Fig. S6C).

LRET-Restrained Molecular Modeling of BK. Donor coordinates obtained from geometric fits to SE data were used as a constraint to refine an initial BK α-subunit model in the absence of ligand. (SI Text, SI: Molecular Modeling and MD Simulations). The LBT peptide sequence was inserted into target sites accordingly to reproduce the LBT-βK constructs in silico using the same MD simulation size and parameters described for the [D19C]IbTX-bodipy-βK complex.

An LBT-β3-βK-restrained MD protocol was performed to refine the BK model according to donor coordinates. The βK-βK Cartesian coordinates were restrained to its donor experimental position by means of a harmonic potential of 1 or 2 kcal mol⁻¹ Å² using the colvar module of NAMD 2.9. The use of positional restraints allows smooth adaptation of the LBT-βK+ and the attached BK segment to the SNPS results. To maintain the LBT structure, a restraint of 2 kcal mol⁻¹ Å² was also applied between the calcium (representing the teribium donor atom) and LBT’s charged side-chains.

Each LBT-βK system was simulated independently. The first system assembles included the LBT at the S1 insertion site. The positions of all four donor atoms were simultaneously restrained by coordinates obtained from the geometric fit. After 28 ns of simulation, the LBT structures were removed from S1 and inserted into the S2 site, extending the simulation by 28 ns with the donor positions restrained accordingly. Following the same strategy, the LBTs were inserted at the S0 site and simulated for 28 ns. The NT-LBT system was not simulated due to the intrinsic freedom of the NT. Finally, the LBTs were removed and the system was further relaxed for 40 ns.

Once each LBT segment was located at its experimental position by the above procedure, the subunit with the lowest energy conformation was considered to build a symmetrical tetramer of the BK α-subunit. The new symmetrical tetramer was used to build a membrane-embedded channel molecular system with the same dimensions and characteristics described above, and submitted to an MD simulation with restrained secondary structure. Symmetry was retained by means of harmonic restraints. The final production simulation lasted 20 ns.

The aforementioned BK channel was used to construct a 3D structural model of the BK αβ1 complex. The transmembrane segments of the β1-subunit were modeled using a generic α-helix due to lack of a crystal structure. The β1-subunit sequence obtained from the UniProt database (ID code Q16558) was analyzed using three secondary structure prediction algorithms (PSIPRED (50), MEMSAT (51) and TMHMM (52)) to define the transmembrane segments’ residues. The residues were modeled using the Prime module from the Schrödinger Suite, followed by a 5-ns MD protocol with the segments embedded in a phosphatidylcholine-cholesterol (POPC) hydrated bilayer.
bilayer with 150 mM KCl. After 20 ns, the obtained structure was collected and used to build the initial BK α1 complex.

Both α- and β-subunits were embedded in a POPC hydrated bilayer with 150 mM KCl. To determine the α1-BK TM position calculated by LR-ET experiments, the α-carbon of the first residue of each segment was restricted to the x-y coordinates of its corresponding experimentally determined position (Ser45 for TM1 and Pro164 for TM2). This conformation was selected over other β-subunits to minimize possible steric clashes among the extracellular loops. The final system containing BK α1 complex (final size of 210 × 210 × 11 Å3, total of 371,560 atoms) was submitted to a 20-ns MD protocol using secondary and symmetry restraints as described above.

ACKNOWLEDGMENTS. We thank Boob Dang (University of Chicago) for technical assistance with protein expression and purification. This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico Grants 1110430 and 1150273 (to R.L.), 1131003 (to F.D.G.-N.), and 11130576 (to D.A.); Anillo Grant ACT-1107, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) - Programa de Investigación Asociativa (PIA) (to F.D.G.-N.); NIH Grant GM303076 (to F.B.); and NIH U54GM087519 (to F.B.) a CONACYT post-doctoral fellowship, Mexican Government (to J.E.S.-R.); CONICYT Graduate Fellowship 21090197 and Grant AT-2411240 (to J.P.C.); and CONICYT Grant 21130631, Chilean Government (to R.S.). The Centro Interdisciplinario de Membrana y Proteínas de Valparaíso is a Millennium Institute supported by the Millennium Scientific Initiative of the Chilean Ministry of Economy, Development, and Tourism (P029-02-F).

